Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema.

نویسندگان

  • E Grünig
  • D Mereles
  • W Hildebrandt
  • E R Swenson
  • W Kübler
  • H Kuecherer
  • P Bärtsch
چکیده

OBJECTIVE This prospective single-blinded study was performed to quantitate noninvasive pulmonary artery systolic pressure (PASP) responses to prolonged acute hypoxia and normoxic exercise. BACKGROUND Hypoxia-induced excessive rise in pulmonary artery pressure is a key factor in high-altitude pulmonary edema (HAPE). We hypothesized that subjects susceptible to HAPE (HAPE-S) have increased pulmonary artery pressure response not only to hypoxia but also to exercise. METHODS PASP was estimated at 45, 90 and 240 min of hypoxia (FiO2 = 12%) and during supine bicycle exercise in normoxia using Doppler-echocardiography in nine HAPE-S and in 11 control subjects. RESULTS In the control group, mean PASP increased from 26+/-2 to 37+/-4 mm Hg (deltaPASP 10.3+/-2 mm Hg) after 90 min of hypoxia and from 27+/-4 to 36+/-3 mm Hg (deltaPASP 8+/-2 mm Hg) during exercise. In contrast, all HAPE-S subjects revealed significantly greater increases (p = 0.002 vs. controls) in mean PASP both during hypoxia (from 28+/-4 to 57+/-10 mm Hg, deltaPASP 28.7+/-6 mm Hg) and during exercise (from 28+/-4 to 55+/-11 mm Hg, deltaPASP 27+/-8 mm Hg) than did control subjects. Stress echocardiography allowed discrimination between groups without overlap using a cut off PASP value of 45 mm Hg at work rates less than 150 W. CONCLUSIONS These data indicate that HAPE-S subjects may have abnormal pulmonary vascular responses not only to hypoxia but also to supine bicycle exercise under normoxic conditions. Thus, Doppler echocardiography during supine bicycle exercise or after 90 min of hypoxia may be useful noninvasive screening methods to identify subjects susceptible to HAPE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Echocardiographic and invasive measurements of pulmonary artery pressure correlate closely at high altitude.

Exaggerated hypoxia-induced pulmonary hypertension is a hallmark of high-altitude pulmonary edema (HAPE) and plays a major role in its pathogenesis. Many studies of HAPE have estimated systolic pulmonary arterial pressure (SPAP) with Doppler echocardiography. Whereas at low altitude, Doppler echocardiographic estimation of SPAP correlates closely with its invasive measurement, no such evidence ...

متن کامل

Acute hypoxic pulmonary vascular response does not accompany plasma endothelin-1 elevation in subjects susceptible to high altitude pulmonary edema.

We have previously shown that high altitude pulmonary edema-susceptible subjects (HAPE-S) have an accentuated pulmonary vascular response to hypoxia. In this study, we investigated the relationship between plasma endothelin-1 (ET-1) levels and the acute hypoxic pulmonary vascular response in HAPE-S and control subjects. In six HAPE-S and seven healthy subjects, we evaluated acceleration time/ri...

متن کامل

Hypoxia-induced pulmonary blood redistribution in subjects with a history of high-altitude pulmonary edema.

BACKGROUND Pulmonary hypertension has been suggested to play an important role in development of high-altitude pulmonary edema (HAPE), and individual susceptibility has been suggested to be associated with enhanced pulmonary vascular response to hypoxia. We hypothesized that much greater pulmonary vasoconstriction would be induced by acute alveolar hypoxia in HAPE-susceptible (HAPE-s) subjects ...

متن کامل

Myocardial performance index in subjects susceptible to high-altitude pulmonary edema.

OBJECTIVE A recent study concerning high-altitude pulmonary edema (HAPE), a non-cardiogenic pulmonary edema, suggested that it is initially a hydrostatic-type pulmonary edema. We suspect that some extent of cardiac insufficiency may likely relate to the mechanism of the development of this disease. METHODS By Doppler echocardiography, the Tei index (a new quantitative index proposed for the e...

متن کامل

Lung membrane conductance and capillary volume derived from the NO and CO transfer in high-altitude newcomers.

Acute exposure to high altitude may induce changes in carbon monoxide (CO) membrane conductance (DmCO) and capillary lung volume (Vc). Measurements were performed in 25 lowlanders at Brussels (D0), at 4,300 m after a 2- or 3-day exposure (D2,3) without preceding climbing, and 5 days later (D7,8), before and after an exercise test, under a trial with two arterial pulmonary vasodilators or a plac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American College of Cardiology

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2000